Hopf bifurcation and Turing instability in the reaction–diffusion Holling–Tanner predator–prey model
نویسندگان
چکیده
The reaction–diffusion Holling–Tanner predator–prey model with Neumann boundary condition is considered. We perform a detailed stability and Hopf bifurcation analysis and derive conditions for determining the direction of bifurcation and the stability of the bifurcating periodic solution. For partial differential equation (PDE), we consider the Turing instability of the equilibrium solutions and the bifurcating periodic solutions. Through both theoretical analysis and numerical simulations, we show the bistability of a stable equilibrium solution and a stable periodic solution for ordinary differential equation and the phenomenon that a periodic solution becomes Turing unstable for PDE.
منابع مشابه
Pattern Formation in a Diffusive Ratio-Dependent Holling-Tanner Predator-Prey Model with Smith Growth
The spatiotemporal dynamics of a diffusive ratio-dependent Holling-Tanner predator-prey model with Smith growth subject to zero-flux boundary condition are investigated analytically and numerically. The asymptotic stability of the positive equilibrium and the existence of Hopf bifurcation around the positive equilibrium are shown; the conditions of Turing instability are obtained. And with the ...
متن کاملTuring instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model.
In this paper we consider a modified spatiotemporal ecological system originating from the temporal Holling-Tanner model, by incorporating diffusion terms. The original ODE system is studied for the stability of coexisting homogeneous steady-states. The modified PDE system is investigated in detail with both numerical and analytical approaches. Both the Turing and non-Turing patterns are examin...
متن کاملSpatiotemporal Dynamics of a Diffusive Leslie-Gower Predator-Prey Model with Ratio-Dependent Functional Response
This paper is devoted to the study of spatiotemporal dynamics of a diffusive Leslie–Gower predator–prey system with ratio-dependent Holling type III functional response under homogeneous Neumann boundary conditions. It is shown that the model exhibits spatial patterns via Turing (diffusion-driven) instability and temporal patterns via Hopf bifurcation. Moreover, the existence of spatiotemporal ...
متن کاملPattern Formation in a Cross-Diffusive Holling-Tanner Model
We present a theoretical analysis of the processes of pattern formation that involves organisms distribution and their interaction of spatially distributed population with selfas well as crossdiffusion in a Holling-Tanner predator-prey model; the sufficient conditions for the Turing instability with zero-flux boundary conditions are obtained; Hopf and Turing bifurcation in a spatial domain is p...
متن کاملHopf bifurcation analysis of a diffusive predator-prey model with Monod-Haldane response
In this paper, we have studied the diffusive predator-prey model with Monod-Haldane functional response. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and non-homogeneous periodic solutions through all parameters of the system which are spati...
متن کامل